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Graphical Gaussian Models

If G = (V ,E ) is an undirected graph and Y = (Yα)α∈V is a random
variable taking values in R|V |, the graphical Gaussian model for Y with
graph G is given by assuming that Y follows a Gaussian distribution which
obeys the (global) Markov property with respect to G.

(Global) Markov Property: For A,B, S ⊂ V ,

A⊥G B | S ⇒ YA⊥⊥YB | YS

where ⊥G denotes graph separation.
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Graphical Gaussian Models

If (Yα)α∈V ∼ N (µ,Σ) and concentration matrix K = Σ−1= (kαβ)α,β∈V ,

Yα⊥⊥Yβ|(YV \{α,β}) ⇐⇒ kαβ = 0

Graphical Gaussian model satisfies Markov Property ⇐⇒ K satisfies

α 6∼ β in G =⇒ kαβ = 0

where ∼ stands for ’connected by an edge’.
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k11 k12 0 k14
k21 k22 k23 0
0 k23 k33 k34
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Graphical Gaussian Models with Symmetries

Højsgaard and Lauritzen (2008) introduced models with symmetry
restrictions, represented by vertex and edge coloured graphs (V, E):

RCON models: Symmetry restrictions on concentrations
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Graphical Gaussian Models with Symmetries

Højsgaard and Lauritzen (2008) introduced models with symmetry
restrictions, represented by vertex and edge coloured graphs (V, E):

RCON models: Symmetry restrictions on concentrations
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V = {{1, 2, 3}, {4}}
E = {{14, 34}, {12}, {23}}



Constraints on the Mean Vector

Højsgaard and Lauritzen (2008) assume: (Yα)α∈V ∼ N(µ,Σ) with µ = 0!

For a given RCON model, we are going to characterize all nice linear
constraints on µ which ensure equality between maximum likelihood
estimator of µ,

µ̂ = max
µ

L(µ,K ; y)

and least squares estimators of µ,

µ∗ = min
µ

∑
α∈V

(Yα − µα)2

which guarantees that µ̂ exists (note the likelihood depends on unknown
K ) and is given by appropriate averages.

nice = all restrictions satisfied by zero vector

Chan and Godsil (1989) applied to graphical Gaussian models characterises
all valid equality constraints, we are going to give a generalisation.



Constraints on the Mean Vector

Theorem (Kruskal): For (Yα)α∈V ∼ N(µ,Σ) with mean µ lying inside a
linear manifold Ω, µ̂ = µ∗ if and only if Ω is invariant under K = Σ−1, i.e.
if and only if

KΩ ⊂ Ω.

(Kruskal, 1968; Haberman, 1975; Eaton, 1983)
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u∈V∪E
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Stability under Generator Matrices T u

Proposition 1 (G.): Let G = (V, E) be the dependence graph of an RCON
model with linear mean space Ω. Then

KΩ ⊆ Ω ∀K inside the model ⇐⇒ T uΩ ⊆ Ω ∀u ∈ V ∪ E .
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Stability under Generator Matrices T u

Proposition 1 (G.): Let G = (V, E) be the dependence graph of an RCON
model with linear mean space Ω. Then

KΩ ⊆ Ω ∀K inside the model ⇐⇒ T uΩ ⊆ Ω ∀u ∈ V ∪ E .

u ∈ V: T uΩ ⊆ Ω ⇐⇒ Ω = ⊕v∈V Ωv , Ωv ≤ Rv

u ∈ E : For ’nice’ Ω, i.e. Ωv = 0 allowed, we only need to consider the
(u, v ,w)-components of G, represented by T [u,v ,w ] ∈ Rv∪w .

T
[u,v ,w ]
αβ =

{
T u
αβ α ∈ v , β ∈ w or α ∈ v , β ∈ w

0 otherwise
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Stability under Generator Matrices T u

Proposition 2 (G.): For ’nice’ Ω,

T uΩ ⊆ Ω ⇐⇒ T [u,v ,w ](Ωv ⊕ Ωw ) ⊆ (Ωv ⊕ Ωw )

for all u ∈ E , v ,w ∈ V.
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In general, if A is a symmetric matrix then a space S is stable under A if
and only if S is a direct sum of subspaces of the eigenspaces EA

λ of A,
which are in fact orthogonal, i.e.

AS ⊆ S ⇐⇒ S = ⊕λRλ, Rλ ≤ EA
λ .

Thus we require

Ωv ,Ωw ≤ Rv ,Rw

Ωv ⊕ Ωw = ⊕λAλ, Aλ ≤ E
[u,v ,w ]
λ for all u ∈ E .



Stability under Component Generator Matrices T [u,v ,w ]

Fact (e.g. West, 1999): A graph G is bipartite if and only if the
eigenvalues of its adjacency matrix A come in pairs: whenever λ is an
eigenvalue, so is −λ.



Stability under Component Generator Matrices T [u,v ,w ]

Fact (e.g. West, 1999): A graph G is bipartite if and only if the
eigenvalues of its adjacency matrix A come in pairs: whenever λ is an
eigenvalue, so is −λ.

Proposition 3 (G.): Ωv ,Ωw ≤ Rv ,Rw are stable under T [u,v ,w ] if and only
if

Ωv = ⊕λ≥0 (Aλ)v and Ωw = ⊕λ≥0 (Aλ)w

with Aλ ≤ E
[u,v ,w ]
λ .

For λ 6= 0, T [u,v ,w ](Ωv ) ⊆ Ωw and vice versa.

For λ = 0, T [u,v ,w ](Ωv ) = 0 ∈ Ωw and vice versa.
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Particular application for equality constraints: design of experiments with
non-trivial concentration structure.



Thank You!



References

Chan, A. and Godsil, C. (1989). Symmetry and eigenvectors. In Hahn, G. and
Sabidussi, G., editors, Graph Symmetry. Algebraic mehods and applications,
volume 497 of C: Mathematical and Physical Sciences, pages 75 – 106. NATO
Scientific Affairs Division, Kluwer Academic Publishers.

Eaton, M. (1983). Multivariate Statistics: A Vector Space Approach. John Wiley
& Sons Inc.

Haberman, S. (1975). How much do Gauss-Markov and least-square estimates
differ? A coordinate-free approach. The Annals of Statistics, 3 No.4:982 – 990.

Højsgaard, S. and Lauritzen, S. (2008). Graphical Gaussian models with edge and
vertex symmetries. Journal of Royal Statistical Society, Series B, 70, Part
5:1005–1027.

Kruskal, W. (1968). When are Gauss-Markov and least squares estimators
identical? A coordinate-free approach. The Ann. Math. Statist., 39:70 – 75.

West, B. D. (1999). Introduction to Graph Theory. Prentice Hall.


