Estimation of Means in Graphical Gaussian Models with Symmetries

Helene Gehrmann
Department of Statistics, University of Oxford gehrmann@stats.ox.ac.uk

The Second CREST-SBM International Conference
"Harmony of Gröbner bases and the modern industrial society"
Osaka, Japan
29 June 2010

Graphical Gaussian Models

If $\mathcal{G}=(V, E)$ is an undirected graph and $Y=\left(Y_{\alpha}\right)_{\alpha \in V}$ is a random variable taking values in $\mathbb{R}^{|V|}$, the graphical Gaussian model for Y with graph \mathcal{G} is given by assuming that Y follows a Gaussian distribution which obeys the (global) Markov property with respect to \mathcal{G}.
(Global) Markov Property: For $A, B, S \subset V$,

$$
A \perp_{\mathcal{G}} B\left|S \Rightarrow Y_{A} \Perp Y_{B}\right| Y_{S}
$$

where $\perp_{\mathcal{G}}$ denotes graph separation.

Graphical Gaussian Models

If $\mathcal{G}=(V, E)$ is an undirected graph and $Y=\left(Y_{\alpha}\right)_{\alpha \in V}$ is a random variable taking values in $\mathbb{R}^{|V|}$, the graphical Gaussian model for Y with graph \mathcal{G} is given by assuming that Y follows a Gaussian distribution which obeys the (global) Markov property with respect to \mathcal{G}.
(Global) Markov Property: For $A, B, S \subset V$,

$$
A \perp_{\mathcal{G}} B\left|S \Rightarrow Y_{A} \Perp Y_{B}\right| Y_{S}
$$

where $\perp_{\mathcal{G}}$ denotes graph separation.
E.g.

$$
\begin{aligned}
& \left(Y_{1}, Y_{2}, Y_{3}, Y_{4}\right) \sim N(\mu, \Sigma) \\
& Y_{1} \Perp Y_{3} \mid\left(Y_{2}, Y_{4}\right) \\
& Y_{2} \Perp Y_{4} \mid\left(Y_{1}, Y_{3}\right)
\end{aligned}
$$

Graphical Gaussian Models

If $\left(Y_{\alpha}\right)_{\alpha \in V} \sim \mathcal{N}(\mu, \Sigma)$ and concentration matrix $K=\Sigma^{-1}=\left(k_{\alpha \beta}\right)_{\alpha, \beta \in V}$,

$$
Y_{\alpha} \Perp Y_{\beta} \mid\left(Y_{V \backslash\{\alpha, \beta\}}\right) \quad \Longleftrightarrow \quad k_{\alpha \beta}=0
$$

Graphical Gaussian model satisfies Markov Property $\Longleftrightarrow K$ satisfies

$$
\alpha \nsim \beta \text { in } \mathcal{G} \Longrightarrow k_{\alpha \beta}=0
$$

where \sim stands for 'connected by an edge'.

Graphical Gaussian Models

If $\left(Y_{\alpha}\right)_{\alpha \in V} \sim \mathcal{N}(\mu, \Sigma)$ and concentration matrix $K=\Sigma^{-1}=\left(k_{\alpha \beta}\right)_{\alpha, \beta \in V}$,

$$
Y_{\alpha} \Perp Y_{\beta} \mid\left(Y_{V \backslash\{\alpha, \beta\}}\right) \quad \Longleftrightarrow \quad k_{\alpha \beta}=0
$$

Graphical Gaussian model satisfies Markov Property $\Longleftrightarrow K$ satisfies

$$
\alpha \nsim \beta \text { in } \mathcal{G} \Longrightarrow k_{\alpha \beta}=0
$$

where \sim stands for 'connected by an edge'.
E.g.

$$
\mathrm{K}=\left(\begin{array}{cccc}
k_{11} & k_{12} & 0 & k_{14} \\
k_{21} & k_{22} & k_{23} & 0 \\
0 & k_{23} & k_{33} & k_{34} \\
k_{14} & 0 & k_{34} & k_{44}
\end{array}\right)
$$

Graphical Gaussian Models with Symmetries

Højsgaard and Lauritzen (2008) introduced models with symmetry restrictions, represented by vertex and edge coloured $\operatorname{graphs}(\mathcal{V}, \mathcal{E})$:

RCON models: Symmetry restrictions on concentrations

$$
\mathrm{K}=\left(\begin{array}{cccc}
k_{11} & k_{12} & 0 & k_{14} \\
k_{21} & k_{22} & k_{23} & 0 \\
0 & k_{23} & k_{33} & k_{34} \\
k_{14} & 0 & k_{34} & k_{44}
\end{array}\right)
$$

Graphical Gaussian Models with Symmetries

Højsgaard and Lauritzen (2008) introduced models with symmetry restrictions, represented by vertex and edge coloured graphs $(\mathcal{V}, \mathcal{E})$:

RCON models: Symmetry restrictions on concentrations

$$
\mathcal{V}=\{\{1,2,3\},\{4\}\}
$$

$$
\mathcal{E}=\{\{14,34\},\{12\},\{23\}\}
$$

$$
\mathrm{K}=\left(\begin{array}{llll}
a & d & 0 & c \\
d & a & e & 0 \\
0 & e & a & c \\
c & 0 & c & b
\end{array}\right)
$$

Constraints on the Mean Vector

Højsgaard and Lauritzen (2008) assume: $\left(Y_{\alpha}\right)_{\alpha \in V} \sim N(\mu, \Sigma)$ with $\mu=0$!
For a given RCON model, we are going to characterize all nice linear constraints on μ which ensure equality between maximum likelihood estimator of μ,

$$
\hat{\mu}=\max _{\mu} L(\mu, K ; y)
$$

and least squares estimators of μ,

$$
\mu^{*}=\min _{\mu} \sum_{\alpha \in V}\left(Y_{\alpha}-\mu_{\alpha}\right)^{2}
$$

which guarantees that $\hat{\mu}$ exists (note the likelihood depends on unknown K) and is given by appropriate averages.
nice $=$ all restrictions satisfied by zero vector
Chan and Godsil (1989) applied to graphical Gaussian models characterises all valid equality constraints, we are going to give a generalisation.

Constraints on the Mean Vector

Theorem (Kruskal): For $\left(Y_{\alpha}\right)_{\alpha \in V} \sim N(\mu, \Sigma)$ with mean μ lying inside a linear manifold $\Omega, \hat{\mu}=\mu^{*}$ if and only if Ω is invariant under $K=\Sigma^{-1}$, i.e. if and only if

$$
K \Omega \subset \Omega .
$$

(Kruskal, 1968; Haberman, 1975; Eaton, 1983)

Constraints on the Mean Vector

Theorem (Kruskal): For $\left(Y_{\alpha}\right)_{\alpha \in V} \sim N(\mu, \Sigma)$ with mean μ lying inside a linear manifold $\Omega, \hat{\mu}=\mu^{*}$ if and only if Ω is invariant under $K=\Sigma^{-1}$, i.e. if and only if

$$
K \Omega \subset \Omega
$$

(Kruskal, 1968; Haberman, 1975; Eaton, 1983)
For RCON models,

$$
K=\sum_{u \in \mathcal{V} \cup \mathcal{E}} \theta_{u} T^{u}
$$

$$
T^{\{1,2,3\}}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Constraints on the Mean Vector

Theorem (Kruskal): For $\left(Y_{\alpha}\right)_{\alpha \in V} \sim N(\mu, \Sigma)$ with mean μ lying inside a linear manifold $\Omega, \hat{\mu}=\mu^{*}$ if and only if Ω is invariant under $K=\Sigma^{-1}$, i.e. if and only if

$$
K \Omega \subset \Omega
$$

(Kruskal, 1968; Haberman, 1975; Eaton, 1983)
For RCON models,

$$
K=\sum_{u \in \mathcal{V} \cup \mathcal{E}} \theta_{u} T^{u}
$$

$$
T^{\{14,34\}}=\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 1 & 0
\end{array}\right)
$$

Stability under Generator Matrices T^{u}

Proposition 1 (G.): Let $\mathcal{G}=(\mathcal{V}, \mathcal{E})$ be the dependence graph of an RCON model with linear mean space Ω. Then
$K \Omega \subseteq \Omega \forall K$ inside the model $\Longleftrightarrow T^{u} \Omega \subseteq \Omega \forall u \in \mathcal{V} \cup \mathcal{E}$.

Stability under Generator Matrices T^{u}

Proposition 1 (G.): Let $\mathcal{G}=(\mathcal{V}, \mathcal{E})$ be the dependence graph of an RCON model with linear mean space Ω. Then
$K \Omega \subseteq \Omega \forall K$ inside the model $\Longleftrightarrow T^{u} \Omega \subseteq \Omega \forall u \in \mathcal{V} \cup \mathcal{E}$.

$$
u \in \mathcal{V}: T^{u} \Omega \subseteq \Omega \quad \Longleftrightarrow \quad \Omega=\oplus_{v \in \mathcal{V}} \Omega_{v}, \quad \Omega_{v} \leq \mathbb{R}^{v}
$$

$$
T^{\{1,2,3\}} \mu=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{c}
\mu_{1} \\
\mu_{2} \\
\mu_{3} \\
\mu_{3}
\end{array}\right)=\left(\begin{array}{c}
\mu_{1} \\
\mu_{2} \\
\mu_{3} \\
0
\end{array}\right)
$$

Stability under Generator Matrices T^{u}

Proposition 1 (G.): Let $\mathcal{G}=(\mathcal{V}, \mathcal{E})$ be the dependence graph of an RCON model with linear mean space Ω. Then
$K \Omega \subseteq \Omega \forall K$ inside the model $\Longleftrightarrow T^{u} \Omega \subseteq \Omega \forall u \in \mathcal{V} \cup \mathcal{E}$.
$u \in \mathcal{V}: T^{u} \Omega \subseteq \Omega \quad \Longleftrightarrow \quad \Omega=\oplus_{v \in \mathcal{V}} \Omega_{v}, \quad \Omega_{v} \leq \mathbb{R}^{v}$
$u \in \mathcal{E}$: For 'nice' Ω, i.e. $\Omega_{v}=0$ allowed, we only need to consider the (u, v, w)-components of \mathcal{G}, represented by $T^{[u, v, w]} \in \mathbb{R}^{v \cup w}$.

$$
T_{\alpha \beta}^{[u, v, w]}= \begin{cases}T_{\alpha \beta}^{u} & \alpha \in v, \beta \in w \text { or } \alpha \in v, \beta \in w \\ 0 & \text { otherwise }\end{cases}
$$

Stability under Generator Matrices T^{u}

Proposition 1 (G.): Let $\mathcal{G}=(\mathcal{V}, \mathcal{E})$ be the dependence graph of an RCON model with linear mean space Ω. Then
$K \Omega \subseteq \Omega \quad \forall K$ inside the model $\Longleftrightarrow T^{u} \Omega \subseteq \Omega \forall u \in \mathcal{V} \cup \mathcal{E}$.

$$
u \in \mathcal{V}: T^{u} \Omega \subseteq \Omega \quad \Longleftrightarrow \quad \Omega=\oplus_{v \in \mathcal{V}} \Omega_{v}, \quad \Omega_{v} \leq \mathbb{R}^{v}
$$

$u \in \mathcal{E}$: For 'nice' Ω, i.e. $\Omega_{v}=0$ allowed, we only need to consider the (u, v, w)-components of \mathcal{G}, represented by $T^{[u, v, w]} \in \mathbb{R}^{v \cup w}$.

$$
T[\{13,14\},\{1,2,3\},\{4\}]=\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 1 & 0
\end{array}\right)
$$

Stability under Generator Matrices T^{u}

Proposition 1 (G.): Let $\mathcal{G}=(\mathcal{V}, \mathcal{E})$ be the dependence graph of an RCON model with linear mean space Ω. Then
$K \Omega \subseteq \Omega \forall K$ inside the model $\Longleftrightarrow T^{u} \Omega \subseteq \Omega \forall u \in \mathcal{V} \cup \mathcal{E}$.

$$
u \in \mathcal{V}: T^{u} \Omega \subseteq \Omega \quad \Longleftrightarrow \quad \Omega=\oplus_{v \in \mathcal{V}} \Omega_{v}, \quad \Omega_{v} \leq \mathbb{R}^{v}
$$

$u \in \mathcal{E}$: For 'nice' Ω, i.e. $\Omega_{v}=0$ allowed, we only need to consider the (u, v, w)-components of \mathcal{G}, represented by $T^{[u, v, w]} \in \mathbb{R}^{v \cup w}$.

$$
T[\{12\},\{1,2,3\},\{1,2,3\}]=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Stability under Generator Matrices T^{u}

Proposition 2 (G.): For 'nice' Ω,

$$
T^{u} \Omega \subseteq \Omega \quad \Longleftrightarrow \quad T^{[u, v, w]}\left(\Omega_{v} \oplus \Omega_{w}\right) \subseteq\left(\Omega_{v} \oplus \Omega_{w}\right)
$$

for all $u \in \mathcal{E}, v, w \in \mathcal{V}$.

Stability under Generator Matrices T^{u}

Proposition 2 (G.): For 'nice' Ω,

$$
T^{u} \Omega \subseteq \Omega \quad \Longleftrightarrow \quad T^{[u, v, w]}\left(\Omega_{v} \oplus \Omega_{w}\right) \subseteq\left(\Omega_{v} \oplus \Omega_{w}\right)
$$

for all $u \in \mathcal{E}, v, w \in \mathcal{V}$.

In general, if A is a symmetric matrix then a space S is stable under A if and only if S is a direct sum of subspaces of the eigenspaces E_{λ}^{A} of A, which are in fact orthogonal, i.e.

$$
A S \subseteq S \quad \Longleftrightarrow \quad S=\oplus_{\lambda} R_{\lambda}, \quad R_{\lambda} \leq E_{\lambda}^{A}
$$

Thus we require

$$
\begin{aligned}
\Omega_{v}, \Omega_{w} & \leq \mathbb{R}^{v}, \mathbb{R}^{w} \\
\Omega_{v} \oplus \Omega_{w} & =\oplus_{\lambda} A_{\lambda}, \quad A_{\lambda} \leq E_{\lambda}^{[u, v, w]} \quad \text { for all } u \in \mathcal{E} .
\end{aligned}
$$

Stability under Component Generator Matrices $T^{[u, v, w]}$

Fact (e.g. West, 1999): A graph G is bipartite if and only if the eigenvalues of its adjacency matrix A come in pairs: whenever λ is an eigenvalue, so is $-\lambda$.

Stability under Component Generator Matrices $T^{[u, v, w]}$

Fact (e.g. West, 1999): A graph G is bipartite if and only if the eigenvalues of its adjacency matrix A come in pairs: whenever λ is an eigenvalue, so is $-\lambda$.

Proposition 3 (G.): $\Omega_{v}, \Omega_{w} \leq \mathbb{R}^{v}, \mathbb{R}^{w}$ are stable under $T^{[u, v, w]}$ if and only if

$$
\Omega_{v}=\oplus_{\lambda \geq 0}\left(A_{\lambda}\right)_{v} \quad \text { and } \quad \Omega_{w}=\oplus_{\lambda \geq 0}\left(A_{\lambda}\right)_{w}
$$

with $A_{\lambda} \leq E_{\lambda}^{[u, v, w]}$.

For $\lambda \neq 0, T^{[u, v, w]}\left(\Omega_{v}\right) \subseteq \Omega_{w}$ and vice versa.
For $\lambda=0, T^{[u, v, w]}\left(\Omega_{v}\right)=0 \in \Omega_{w}$ and vice versa.

Example

[^0]
Example

$$
\begin{gathered}
\left(A_{\lambda}\right)_{v} \leq\left\langle\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right),\left(\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right)\right\rangle,\left\langle\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)\right\rangle \\
\left(A_{\lambda}\right)_{v} \leq\left\langle\left(\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right)\right\rangle, \delta_{1}\left\langle\left(\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right)\right\rangle, \delta_{2}\left\langle\left(\begin{array}{l}
2 \\
1 \\
1
\end{array}\right)\right\rangle \\
\left(A_{\lambda}\right)_{w} \leq\left\langle\left(\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right)\right\rangle, \delta_{1}\left\langle\left(\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right)\right\rangle, \delta_{2}\left\langle\left(\begin{array}{l}
1 \\
1 \\
2
\end{array}\right)\right\rangle
\end{gathered}
$$

Example

(i) $\Omega_{v}=\left\langle\left(\begin{array}{c}0 \\ -1 \\ 1\end{array}\right)\right\rangle$

(i) $\Omega_{w}=\left\langle\left(\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right)\right\rangle$
(i) $\mu_{1}=0, \mu_{2}=-\mu_{3}$
(i) $\mu_{4}=-\mu_{5}, \mu_{6}=0$

Example

(i) $\Omega_{v}=\left\langle\left(\begin{array}{c}0 \\ -1 \\ 1\end{array}\right)\right\rangle$
(ii) $\Omega_{v}=\left\langle\left(\begin{array}{c}0 \\ -1 \\ 1\end{array}\right)\right\rangle^{\perp}$

u_{1}
u_{2}
(i) $\Omega_{w}=$

(ii) $\Omega_{w}=\left\langle\left(\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right)\right\rangle^{\perp}$
(i) $\mu_{1}=0, \mu_{2}=-\mu_{3}$
(i) $\mu_{4}=-\mu_{5}, \mu_{6}=0$
(ii) $\mu_{1} \in \mathbb{R}, \mu_{2}=\mu_{3}$
(ii) $\mu_{4}=\mu_{5}, \mu_{6} \in \mathbb{R}$

Example

(i) $\mu_{1}=0, \mu_{2}=-\mu_{3}$
(ii) $\mu_{1} \in \mathbb{R}, \mu_{2}=\mu_{3}$
u_{1}

u_{2}
(i) $\mu_{4}=-\mu_{5}, \mu_{6}=0$
(ii) $\mu_{4}=\mu_{5}, \mu_{6} \in \mathbb{R}$

Particular application for equality constraints: design of experiments with non-trivial concentration structure.

Thank You!

References

Chan, A. and Godsil, C. (1989). Symmetry and eigenvectors. In Hahn, G. and Sabidussi, G., editors, Graph Symmetry. Algebraic mehods and applications, volume 497 of C : Mathematical and Physical Sciences, pages 75 - 106. NATO Scientific Affairs Division, Kluwer Academic Publishers.
Eaton, M. (1983). Multivariate Statistics: A Vector Space Approach. John Wiley \& Sons Inc.
Haberman, S. (1975). How much do Gauss-Markov and least-square estimates differ? A coordinate-free approach. The Annals of Statistics, 3 No.4:982-990.
Højsgaard, S. and Lauritzen, S. (2008). Graphical Gaussian models with edge and vertex symmetries. Journal of Royal Statistical Society, Series B, 70, Part 5:1005-1027.
Kruskal, W. (1968). When are Gauss-Markov and least squares estimators identical? A coordinate-free approach. The Ann. Math. Statist., 39:70-75.
West, B. D. (1999). Introduction to Graph Theory. Prentice Hall.

[^0]:

